有一些现在网站上已经很难找到了,文本分类算

作者:互联网

互联网中蕴含着海量的内容信息,基于这些信息的挖掘始终是诸多领域的研究热点。当然不同的领域需要的信息并不一致,有的研究需要的是文字信息,有的研究需要的是图片信息,有的研究需要的是音频信息,有的研究需要的是视频信息。

1,模块分类:

1)分类和回归算法:广义线性模型,支持向量机,kNN,朴素贝叶斯,决策树,特征选择
2)聚类算法:K-means
3)维度约简:PCA
4)模型选择:交叉验证
5)数据预处理:标准化,去除均值率和方差缩放,正规化,二值化,编码分类特征,缺失值的插补

三,分词,去停用词形成词向量特征

2.3.2 朴素贝叶斯算法实现

样例:使用简单的英文语料作为数据集,代码见文件

# 编写导入的数据
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him','my'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
                # 使用简单的英语语料作为数据集,有6个文本

    classVec = [0,1,0,1,0,1]     # 文本对应的类别

    return postingList,classVec  # postingList是训练集文本,classVec是每个文本对应的分类

###########################################################################

# 编写贝叶斯算法(sklearn已有贝叶斯算法包,现在是理解贝叶斯算法原理后,自己编写算法代码)


#(1)编写一个贝叶斯算法类,并创建默认的构造方法

class NBayes(object):     # 创建贝叶斯算法类

    def __init__(self):       #初始化类的属性
        self.vocabulary = []  #词典
        self.idf = 0          #词典的IDF权值向量
        self.tf = 0           #训练集的权值矩阵
        self.tdm = 0          #P(x|yi)
        self.Pcates = {}      #P(yi)是一个类别词典P(yi)的值:{类别1:概率,类别2:概率}
        self.labels = []      #对应每个文本的分类,是一个外部导入的列表
        self.doclength = 0    #训练集文本数
        self.vocablen = 0     #词典词长
        self.testset = 0      #测试集 


#(2)导入和训练数据集,生成算法必需的参数和数据结构

def train_set(self,trainset,classVec):  # 传入训练集文本和对应的分类类别

    self.cate_prob(classVec)    # 计算每个分类在数据集中的概率P(yi),cate_prob函数在下面创建
    self.doclength = len(trainset) # 用len函数计算训练集trainset的文本数,赋给类的doclength属性

    tempset = set()  # 使用set(),初始化一个空的集合:是一个无序不重复元素集
    [tempset.add(word) for doc in trainset for word in doc] #生成词典  ,add是往集合添加元素
    # doc遍历trainset,word遍历doc,再将word添加进tempset集合里
    # 训练集文本trainset实际上是一个矩阵,doc遍历取得向量,即单个文本,word遍历取得文本内的词,再添加进集合
    self.vocabulary = list(tempset) # 将tempset转换为列表list,添加进类的vocabulary属性,即词典
    self.vocablen = len(self.vocabulary) #len函数计算词典的长度(这里的词典实际上是一个不重复的词袋空间)

    self.calc_wordfreq(trainset)  # 计算数据集的词频(word frequency):tf和idf ,调用了calc_wordfred函数,传入训练集trainset
    self.build_tdm()  # 按分类累计向量空间的每维值P(x|yi),调用了build_tdm函数


# (3) cate_prob函数:计算数据集中 每个分类的概率P(yi)

def cate_prob(self,classVec):  # 该函数用于计算每个类别在数据集中的概率,被上面的train_set函数调用
    self.labels = classVec     # classVec是导入的训练集文本对应的类别
    labeltemps = set(self.labels)  # 获取全部分类,set()集合:无序不重复元素集,本例就两类:{0,1}
    for labeltemp in labeltemps:    # 遍历所有分类{0,1}
        self.labels.count(labeltemp)  #统计self.labels里类别的个数:类别0的个数和类别1的个数
        self.Pcates[labeltemp] = float(self.labels.count(labeltemp))/float(len(self.labels))
        # 每种类别个数/类别类别总数:6,在Pcates字典里,创建键值对{'0':概率,'1':概率}


# (4) calc_wordfred函数:生成普通的词频向量  TF-IDF

def calc_wordfred(self,trainset):   # 用于计算词袋(词典)内每个词的词频,被上面的train_set函数调用

    self.idf = np.zeros([1,self.vocablen]) # 全0矩阵,矩阵大小:1x词典长度,self.vocablen是上面计算出的词典长度(词袋长)
    self.tf = np.zeros([self.doclength,self.vocablen]) #构造全0矩阵:训练集文件数x词典数,doclength是上面计算出的训练集文本数:6,vocablen是计算出的词典长度 
    #构造训练集的IDF和TF向量模型,IDF是一行,TF是文档数,行,初始化全为0

    for indx in xrange(self.doclength):  # xrange与range用法相同,结果不同,生成的不是列表,而是生成器,适合数字序列较大时,不用一开始就开辟内存空间
    # indx遍历训练集文本数列表,indx取得的是数
        for word in trainset[indx]: #word 遍历trainset中的每一文本的词,##word取得的是词
            self.tf[indx,self.vocabulary.index(word)] +=1    # 权值矩阵的第index行,第k列,加1
            # 词典列表的index方法,返回word的索引位置k
            #  生成了TF词频矩阵

        for signleword in set(trainset[indx]):  # signleword遍历训练集文本里每一文本构成的集合(取得每一文本不重复的词),
            self.idf[0,self.vocabulary.index(signleword)] +=1  # idf权值矩阵的第k个加1
            #index返回每一文本不重复词的索引位置
            #生成IDF矩阵           
## 实际上本函数生成的是训练集的TF矩阵和词袋的IDF矩阵(绝对数形式,非频率)        


# (5) build_tdm函数:按分类累计计算向量空间的每维值P(x|yi),已知类别为yi,求是x的概率

def build_tdm(self):   #计算P(x|yi),被train_set函数调用

    self.tdm = np.zeros([len(self.Pcates),self.vocablen])  #构造全0矩阵,大小:类别词典长度2(在cate_prob函数里)x 词典长度(train_set函数里)
    sumlist = np.zeros([len(self.Pcates),1])  # 构造全0矩阵:大小:类别词典长度x1
    #统计每个分类的总值,sumlist两行一列

    for indx in xrange(self.doclength):    #indx遍历训练集文本数生成的列表[0,1,2,3,4,5],取得的是数字 

        #将同一类别的词向量空间值tf加总
        #即:tf权值矩阵值,六行,分为两类,同类相加,变为两行
        self.tdm[self.labels[indx]] += self.tf[indx]   # labels[indx]是训练集文本对应类别里的第indx个(在cate_prob函数里)即[0,1,0,1,0,1]里的第indx个,对应tdm的第某行
        # tf[indx]是tf权值矩阵的第indx行(在calc_wordfred函数里)

        #统计每个分类的总值--是一个标量
        sumlist[self.labels[indx]] = np.sum(self.tdm[self.labels[indx]]) 
        #利用np.sum计算tdm矩阵的和,赋值给sumlist矩阵的?
        # sumlist得到的结果:0:总值
                            #1:总值

    self.tdm = self.tdm/sumlist   # tdm即:P(x|yi)=P(xyi)/P(yi)
    #得到的结果tdm是一个两行,词典长列的矩阵,表示着P(a1|yi),P(a2|yi)……
  #tdm是一个向量,sumlist是一个值


(3)-(5)函数都被train_set函数调用  
#####################################################################################



# (6) map2vocab函数:将测试集映射到当前字典

def map2vocab(self,testdata):  # 传入测试集数据 testdata
    self.testset = np.zeros([1,self.vocablen])  #构造全0矩阵,大小:1*词典长度
    for word in testdata:    # word遍历测试集(某个文本)
        self.testset[0,self.vocabulary.index(word)] +=1 # testset矩阵的第k个加1
        # vocabulary.index(word)返回字典的与word匹配的词的索引位置
# 本函数是将测试集文档转换为以频数表示的[   ]矩阵   


# (7) predict函数:预测分类结果,输出预测的分类类别

def predict(self,testset):    #传入测试集数据

    if np.shape(testset)[1] != self.vocablen: #如果测试集长度与词典长度不相等,则退出程序
        print "输出错误"
        exit(0)

    predvalue = 0  #初始化类别概率
    predclass = ""  # 初始化类别名称

    for tdm_vect,keyclass in zip(self.tdm,self.Pcates): 
       #P(x|yi) P(yi)    #      变量tdm,计算最大分类值
    #zip函数将tdm和Pcates打包成元组,并返回元组组成的列表。
    #tdm是P(x|yi),Pacates是类别词典P(yi)

        temp = np.sum(testset*tdm_vect*self.Pacate[keyclass])  #测试集testset乘tdm_vect乘Pcates[keyclass]  ,并求和
        #测试集向量*P
        if temp > predvalue:  
            predvalue = temp
            predclass = keyclass
    return predclass   # 输出预测的类别(概率最大的类别)

#########################################################################

#算法的改进:为普通的词频向量使用TF-IDF策略

#calc_tfidf函数:以TF-IDF方式生成向量空间

def calc_tfidf(self,trainset):        # 传入训练集数据
    self.idf = np.zeros([1,self.vocablen])   #构造全0矩阵,大小:1*词典长度
    self.tf = np.zeros([self.doclength,self.vocablen])  #构造全0矩阵,大小:文本数*词典长度

    for indx in xrange(self.doclength):   #indx遍历文本数生成的列表,取得的是数字      
        for word in trainset[indx]:        #word遍历训练集的第indx个文本里的词
            self.tf[indx,self.vocabulary.index(word)]+=1  #tf矩阵的某个值加1
            #消除不同句长导致的偏差
        self.tf[indx] = self.tf[indx]/float(len(trainset[indx]))  #计算的是频率而不是频数

        for signleword in set(trainset[indx]):
            self.idf[0,self.vocabulary.index(signleword)] +=1
    self.idf = np.log(float(self.doclength)/self.idf)

    self.tf = np.multiply(self.tf,self.idf) # 矩阵与向量的点乘TFxIDF

######################################################################

#执行创建的朴素贝叶斯类,获取执行结果

#coding=utf-8

import sys
import os
from numpy import *
import numpy as np
from NBayes_lib import *

dataSet,listClasses = loadDataSet() 

 # 导入外部数据集,loadDataSet是自己创建的函数,返回值为两个,postingList是训练集文本,classVec是每个文本对应的分类
# dataset为句子的词向量
# listclass为句子所属类别 [0,1,0,1,0,1]

nb = NBayes()  #实例化 NBayes是我们创建的贝叶斯算法类
nb.train_set(dataSet,listClasses) # 训练数据集。train_set是创建的类的函数,用于训练
nb.map2vocab(dataSet[0])   # 随机选择一个测试句 #map2vocab函数将测试集映射到当前词典
print nb.predict(nb.testset)  # 输出分类结果,predict函数用于预测分类结果,输出预测的分类类别

# 最后运行程序,看似没有数据间传递,实则是在类属性中已定义好并赋值给属性

有了一个个单词之后,需要将这些单词转化为一些模型能够接受的输入形式,也就是词向量。一种常见的方法就是构建一个 N * M 的矩阵,M 大小是所有文本中词的个数;N 的大小是所有文本个数,在本文的环境中就是 title,deion 或者 keywords 的(即网站的)个数。

2.1 文本挖掘和文本分类的概念

1,文本挖掘:指从大量的文本数据中抽取事先未知的,可理解的,最终可使用的知识的过程,同时运用这些知识更好的组织信息以便将来参考。
简言之,就是从非结构化的文本中寻找知识的过程
2,文本挖掘的细分领域:搜索和信息检索(IR),文本聚类,文本分类,Web挖掘,信息抽取(IE),自然语言处理(NLP),概念提取。
3,文本分类:为用户给出的每个文档找到所属的正确类别
4,文本分类的应用:文本检索,垃圾邮件过滤,网页分层目录自动生成元数据,题材检测
5,文本分类的方法:一是基于模式系统,二是分类模型


A={0,1},表示具体的类别,即是不可描述网站还是普通网站。因此上述公式可以表示为:

2.4.1 KNN算法的原理

1,算法思想:如果一个样本在特征空间的k个最近邻(最近似)的样本中的大多数都属于某一类别,则该样本也属于这个类别,k是由自己定义的外部变量。

2,KNN算法的步骤:

第一阶段:确定k值(就是最近邻的个数),一般是奇数
第二阶段:确定距离度量公式,文本分类一般使用夹角余弦,得出待分类数据点与所有已知类别的样本点,从中选择距离最近的k个样本
夹角余弦公式:cos =AB/|A|*|B|
第三阶段:统计k个样本点中各个类别的数量,哪个类别的数量最多,就把数据点分为什么类别

全文大约3500字。读完可能需要下面这首歌的时间

2.5 结语

本章讲解了机器学习的两个算法:朴素贝叶斯算法和K最近邻算法

介绍了文本分类的6个主要步骤:
1)文本预处理
2)中文分词
3)构建词向量空间
4)权重策略----TF-IDF方法
5)朴素贝叶斯算法器
6)评价分类结果

图片 1

2.2 文本分类项目

所以对于正常语料的筛选,也是一份很重要的工作。通过对于误识别结果的分析,是可以筛选出一份较为准确的语料库的,但其中的工作量也是比较多。


本文就是根据网页的文字信息来对网站进行分类。当然为了简化问题的复杂性,将以一个二分类问题为例,即如何鉴别一个网站是不可描述网站还是普通网站。你可能也注意 QQ 浏览器会提示用户访问的网站可能会包含色情信息,就可能用到类似的方法。本次的分享主要以英文网站的网站进行分析,主要是这类网站在国外的一些国家是合法的。其他语言的网站,方法类似。

2.2.5 权重策略:TF-IDF方法

1,词向量空间模型:将文本中的词转换为数字,整个文本集转换为维度相等的词向量矩阵(简单理解,抽取出不重复的每个词,以词出现的次数表示文本)
2,归一化:指以概率的形式表示,例如:0,1/5,0,0,1/5,2/5,0,0,也称为:词频TF(仅针对该文档自身)
3,词条的文档频率IDF: 针对所有文档的词频

二,语料信息的获取

2.4.2 kNN算法的python实现
#coding=utf-8

#第一阶段,导入所需要的库,进行数据的初始化

import sys
import os
from numpy import *
import numpy as *
import operator
from Nbayes_lib import *

# 配置utf-8输出环境

reload(sys)
sys.setdefaultencoding('utf-8')

k=3

#第二阶段:实现夹角余弦的距离公式

def cosdist(vector1,vector2):
    return dot(vector1,vector2)/(linalg.norm(vector1)*linalg.norm(vector2)) # 夹角余弦公式;AB/|A||B|   

#第三阶段:KNN实现分类器

#KNN分类器

#测试集:testdata;训练集:trainSet;类别标签;listClasses; k:k个邻居数

def classify(testdata,trainSet,listClasses,k):
    dataSetSize=trainSet.shape[0]     #返回样本的行数,(shape返回行数和列数)
    distances=array(zeros(dataSetSize))  #构造一个全0数组,大小为;

    for indx in xrange(dataSetSize):   #计算测试集与训练集之间的距离:夹角余弦
        distances[indx]=cosdist(testdata,trainSet[indx])
        sortedDisIndicies=argsort(-distances)
        classCount={}
        for i in range(k):#获取角度最小的前k项作为参考项
            #按排序顺序返回样本集对应的类别标签
            voteIlabel=listClasses[sortedDistIndices[i]]
            #为字典classCount赋值,相同key,其value加1
            classCount[voteIlabel]=classCount.get(voteIlabel,0) +1

        #对分类字典classCount按value重新排序
        #sorted(data.iteritems(),key=operator.itemgetter[1],reverse=True)
        #classCount.iteritems();字典迭代器函数
        #key ;排序参数;operator.itemgetter(1):多级排序
        sortedClassCount=sorted(classCount.iteritem(),key=operator.itemgetter(1),reverse=True)
        return sortedClassCount[0][0]   #返回排序最高的一项

# 最后使用KNN算法实现文本分类

dataSet,listClasses=loadDataSet()
nb.NBayes()
nb.train_set(dataSet,listClasses)  #使用之前贝叶斯分类阶段的数据集及生成的TF向量进行分类

print classify(nb.tf[3],nb.tf,listClasses,k)

责任编辑:

2.2.1 文本预处理:

文本处理的核心任务:将非结构化的文本转换为结构化的形式,即向量空间模型

文本处理之前需要对不同类型的文本进行预处理

在面对加密通信报文情况下的数据时候,如何来识别不可描述网站呢?当然关于这方面,我有幸做过一些研究和实践。如果对这种场景下面识别感兴趣的同学,可以在我的的读者圈留言。我会再写一篇跟大家一同探讨。

2.3.1 贝叶斯公式推导

朴素贝叶斯文本分类的思想:它认为词袋中的两两词之间是相互独立的,即一个对象的特征向量中的每个维度都是相互独立的。
朴素贝叶斯分类的定义:
(1),设x={a1,a2,^am}为一个待分类项,而每个a为x的一个特征属性
(2),有类别集合C={y1,y2,……yn}.
(3),计算P(y1|x),P(y2|x),……,P(yn|x)
(4),如果P(yk|x)=max{P1,P2,……,Pn},则x属于yk

-- 计算第(3)步的各个条件概率:
(1)找到一个已知分类的待分类集合,即训练集
(2)统计得到在各个类别下的各个特征属性的条件概率估计,即:
P(a1|y1),P(a2|y2),……,P(am|y1)
P(a1|y2),P(a2|y2),……,P(am|y2)
……
(3),如果各个特征属性是条件独立的,根据贝叶斯定理有:
P(yi|x) = P(x|yi)*P(yi)/P(x)
分母对于所有类别为常数,故只需将分子最大化即可

故,贝叶斯分类的流程为:
第一阶段 : 训练数据生成训练样本集:TF-IDF
第二阶段: 对每个类别计算P(yi)
第三阶段:对每个特征属性计算所有划分的条件概率
第四阶段:对每个类别计算P(x|yi)P(yi)
第五阶段:以P(x|yi)P(yi)的最大项作为x的所属类别

图片 2

TF-IDF权重策略:计算文本的权重向量

1,TF-IDF的含义:词频逆文档频率。如果某个词在一篇文章中出现的频率高(词频高),并且在其他文章中很少出现(文档频率低),则认为该词具有很好的类别区分能力,适合用来分类。IDF其实是对TF起抵消作用。
2,词频TF的定义:某一个给定的词语在该文件中出现的频率(对词数的归一化)
3,逆文件频率IDF:某一特定词语的IDF,由总文件数除以包含该词语的文件的数目,再将商取对数
4,TF-IDF的计算:TF与IDF的乘积
5,将分词后的持久化语料库文件dat利用TF-IDF策略转化,并持久化的代码见文件

#coding=utf-8

import sys
import os 
from sklearn.datasets.base import Bunch  # 导入Bunch类
import cPickle as pickle  #导入持久化类

from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer   # TF-IDF向量转换类
from sklearn.feature_extraction.text import TfidfVectorizer   # TF-IDF向量生成类


reload(sys)
sys.setdefaultencoding('utf-8')  #UTF-8输出环境

# 读取和写入Bunch对象的函数

def readbunchobj(path):   # 读取bunch对象函数
    file_obj = open(path,"rb")
    bunch = pickle.load(file_obj)  # 使用pickle.load反序列化对象
    file_obj.cloase()
    return bunch

def writebunchobj(path,bunchobj):   # 写入bunch对象函数
    file_obj = open(path,"wb")
    pickle.dump(bunchobj,file_obj)   # 持久化对象
    file_obj.close()

###################################从训练集生成TF-IDF向量词袋

# 1,导入分词后的词向量Bunch对象
path = "train_word_bag/train_set.dat"  # 词向量空间保存路径(就是分词后持久化的文件路径)
bunch = readbunchobj(path)   # 调用函数读取bunch对象,赋值给bunch

# 2,构想TF-IDF词向量空间对象,也是一个Bunch对象
tfidfspace = Bunch(target_name=bunch.target_name,label=bunch.label,filenames=bunch.filenames,tdm=[],vocabulary=[])     # 构建Bunch对象,将bunch的部分值赋给他

# 3,使用TfidfVectorizer初始化向量空间模型
vectorizer = TfidfVectorizer(stop_words=stpwrdlist,sublinear_tf=True,max_df=0.5)
transformer=TfidfTransformer()   # 创建一个该类的实例,该类会统计每个词语的TF-IDF权值
# 文本转化为词频矩阵,单独保存字典文件
tfidfspace.tdm = vectorilzer.fit_transform(bunch.contents)  # 将bunch.content的内容……赋给模型的tdm值
tfidfspace.vocabulary = vectorizer.vocabulary   # ????????????????

# 4,持久化TF-IDF向量词袋
space_path = "train_word_bag/tfidfspace.dat"   # 词向量词袋保存路径
writebunchobj(space_path,tfidfspace)  # 调用写入函数,持久化对象

使用 python 的 jieba 模块结合上述所述的 5 个步骤,得到若干单词,相应代码为:

2.3 分类算法:朴素贝叶斯

本节主要讨论朴素贝叶斯算法的基本原理和python实现

本文由新葡亰平台游戏网址发布,转载请注明来源

关键词: